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ALGEBRAIC METHODS 
FOR MODIFIED ORTHOGONAL POLYNOMIALS 

DAVID GALANT 

ABSTRACT. Some algebraic methods are given to implement Uvarov's extended 
Christoffel theorem. The stability of the algorithms is discussed. 

1. INTRODUCTION 

An earlier paper [1] gave a variant of Christoffel's theorem in orthogonal 
polynomial theory that is useful for finding numerically Gaussian quadrature 
rules for some nonclassical weight functions. Subsequently, the theory was 
simplified (Golub and Kautsky [4], Kautsky and Golub [6]) and extended from 
polynomial modification of the weight function to rational modification of the 
weight function (Gautschi [2]) to cover Uvarov's extended Christoffel theorem 
(Uvarov [8]). This paper describes some algebraic methods for implementing 
Uvarov's theorem. The methods use only real arithmetic. Strong plausibility 
arguments for the stability and instability of the algorithms are given. 

2. BACKGROUND 

A weight function, w(t), is a nonnegative function with infinitely many 
points of increase for which the monomial moments {iu0, u I, .. . } exist and 
are finite. Associated with each weight function is a sequence of monic orthog- 
onal polynomials {qj}, j = 1, 2, ..., deg((oj) = I, that satisfy a three-term 
recurrence relation of the form 

(1) 9j = (t - bj)ejp 1 - gjPj-2 

with (oo(t) = 1 and (_ (t) = 0 . The gj are positive. 
With 4DT(t) = (qo(t), 9o1(t), p2(t), ...), we have 

(2a) to(t) = Jo>(t), 
-b1 1 0 

g2 b2 1 ... 

(2b) J 0 g3 b3 

J is the Jacobi matrix associated with w(t). From (2a), 

(2c) Q(t)1(t) = Q(J)1D(t) 
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for an arbitrary polynomial Q(t) follows by induction. As a result, using the 
orthogonality of the (p, we have 

Theorem. If E(t) has a uniformly convergent power series on [a, b], -oc < 
a < b < oc, or E(t) is an entire function, then 

ob ob 
JE(t)w (t) dt = E(J) 1,1 j w (t) dt = yoE(J) 1, 1 

This result seems to be new, and may be useful for the numerical evaluation 
of this kind of function and for the derivation of Taylor series for them. 

The use of J simplifies the statement of results considerably; formulae us- 
ing J are to be interpreted as expression of all the relations given by the rows. 
Thus, (2c) expresses each of the polynomials on the left as a sum of the original 
orthogonal polynomials. Furthermore, calculations involving J are not partic- 
ularly taxing. For instance, in the above theorem, only the first column of E(J) 
is needed. Thus only the first column of powers of J are required, and since 
J is tridiagonal, the calculation of these columns is simple because only three 
contiguous elements are involved. 

3. MAIN PROBLEM 

Given w (t) and J, and a rational function F(t) that is positive and without 
poles in the support of w (t), construct the Jacobi matrix for the weight function 
(3) tb(t) = F(t)w(t). 
The recurrence relation parameters can be calculated using the Stieltjes formulas 
(Gautschi [2]) 

f to5 1 (t)tb (t) dt 

(4a) f jl(t)P(t) d t 

(b I f 02_ (t)W'(t) dt 

Algebraic expression. When F(t) is rational, it is unnecessary to use these 
integral formulas. Observe that if w(t) = tb(t)/Q(t), Q(t) a polynomial, then 
for any integrable function f (t) 

J f(t)t i(t) d t = JQ(t)f (t)w (t) dt. 

From equation (2c) the Stieltjes formulas can be expressed in terms of the 
matrices J and Q(J) as: 

(5a) bi = [Q(( ))]t 0f1 (t) = (t - be ), 

(5a) - [Q2(j)Q(]j)11 

(5c) b2 = - 02 (t) =(t -b2) (t) -2 (0 (t), (5c) - ,[2(J)JQ(J)]11 

and= st (orth 

and so forth. 
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A more direct approach is: 

Theorem 1. Let P(t) be a polynomial that is positive on the support of w(t). 
Write P(J) = LeR, where Le is a lower triangular matrix with unit diagonal 
and R is an upper triangular matrix. Then 

(6) P(J)=RLe, 

where 
b1 1 o . 
g2 b2 1 ... 

0 g3 b3 

is the Jacobi matrix associated with Ph (t). 

This result is in Kautsky and Golub [6]. They use symmetric matrices and 
orthonormal polynomials, but the difference is minor. With P(t) = U(t - v), 
and a chosen to make P(t) positive in the appropriate interval, this result 
was given by Galant [1], who also gave an algorithm based upon the QD algo- 
rithm (Henrici [5]). This latter algorithm was generalized by Gautschi [2], who 
showed, essentially, that it could be run backwards to handle the case when 
Q(t) = a(t - v) . In our terms, the result is stated as follows: 

Theorem (Linear backward method). Let Q(t) = a(t - v), and assume b1 and 
g2 are known. Write 

(7) Q(J) = RLe 5 

where RI, = a(b1 - v), L21 = 42/R1R, R12 = 1, and LI, = 1. Then 

(8) Q(J) = LeR. 

The proof follows from examining the matrices generated and comparing 
them with the matrices in Theorem 1, using P(t) = a(t - v) . They are identical. 

Since every real polynomial can be factored into a product of real linear and 
real quadratic factors, the general case can be treated by factoring the polyno- 
mial and iterating the procedure above, along with 

The backward quadratic method. Let Q(t) = t2 - 2xt + (X2 + y2), and assume 
b1, g2, and k3 are known. Perform the decomposition Q(J) = RLe, with 

RI I = Q(bl) + k2 5 LI, = 1, 

R12 = b? +b2-2x, L21 = 2 

R13= 1, L31= g2g3 

Then 

Q(J) = LeR. 

We have chosen the first row of Le and the first column of R to produce the 
matrices that are formed in Theorem 1 with the weight function w(t). 
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Recovering J from Q(J) is direct for a linear factor a(t - v), because 
J = , Q(J) + v. For a quadratic factor, the process is almost as direct. Since 
bi is known, we can extract the diagonal, using 

Jj+i,,j+l = Q(J)j,j+l + 2x - Jjj 

Furthermore, since k2 (and for that matter k3) is known and Q(J)j+2,1 = 

gj+2 * kj+1, the subdiagonal of J is given by 

Q(J)j, j+2 
q+il--- 

The explicit factorization of the polynomial Q(t) and many intermediate fac- 
torization/recombination steps are required. Performing more work initially 
can eliminate the need for this explicit knowledge. This leads to: 

Method 2 (The backward method). Let Q(t) be a polynomial of degree m. 
Suppose further that b1 and kj, j = 1, 2, ... , m, are known. Calculate the 
first row of R and the first column of Le from them and complete the RLe 
decomposition. Recover J from Q(J), using 

m+1 j+m-1 

Q(J)j+mj = l gi+j- 1, Q(J)j,j+m-i = Z bi +a, 
i=2 i=j 

where a is the coefficient of tm-I in Q(t). 

Theorem 1 and Method 2 almost solve the problem. The numerical processes 
are real, but Method 2 requires data which is not usually available. To compute 
the matrices Le and R, knowledge of the first m of the three-term recurrence 
relation parameters, which are not known, is required. Probably the only prac- 
tical method to obtain these is given by the algorithm in Gautschi [3]. However, 
as is shown below, the matrix decomposition is very unstable and results quickly 
lose all accuracy. 

Practically, we truncate J and work with a principal minor. However, equa- 
tion (2a) is now incorrect because the last column of the principal minor of 
J must be modified. Neglecting this correction makes the last m rows and 
columns of the corresponding principal minor of Q(J) wrong, but the other 
principal minors are correct. So, if the recurrence relation parameters up to 
index n are desired, work with the (n + m) x (n + m) principal minor of J. 
Note that formation of the first column of Le and the first row of R in the 
backward method requires the m x m principal minor of J. 

4. STABILITY 

Galant [1], Gautschi [2], and Golub and Kautsky [4] have all noted that the 
forward algorithm is stable and Gautschi has noted that the backward algorithm 
appears unstable. While the stability of the forward algorithm follows from 
the stability of the Cholesky decomposition of a positive definite matrix, the 
reason for the instability of the backward algorithm is less direct. It is sufficient 
to consider the linear backward method and the quadratic backward method, 
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which are given in ?3. A strong plausibility argument for the inherent instability 
of the algorithm in many cases can be based on 

Theorem (Szego [7, Chapter 12]). Let w(t) be a weight function on the interval 
[-1, 1] with the property that the function f (0) = w(cos 0) I sin 01 is measurable 
and positive and the integrals f f(0) d6 and f, log f (0) I d6 are positive and 
finite. Then the three-term recurrence relation parameters satisfy 

lim bn = ? , lim In= 
nago noa gn =n4 

By applying the asymptotic behavior which is the result of this theorem to 
the forward algorithm with a quadratic polynomial, we have 

1/16 

3/2 -Rj-2,-2 

Asymptotically, then, 

Rj, j (3?+ v) 
4 

and, consequently, 
(3-V') 

Lj+2, j 4 
Forming the elements of Q(J), decomposing the matrix, forming Q(J), and 
extracting J are all provably stable; the only errors are roundoff errors on posi- 
tive numbers and perhaps an additional small error in calculating kn . However, 
the backward algorithm is considerably different. With the same choice of Q 
and J, we have the same asymptotic behavior of the elements of R and Le, 
but the rules are 

Rj= gjgj-1 Ljj-2 = 1 + gj-2 + gj-1 -Rj-2, j-2 
Lj, j-2 

Here, Lj,1j2 is the difference of two nearly equal numbers, and errors are 
magnified by about (3 + v/8)2 per double step, or about 0.766 digits per step 
in the calculation of the successive principal minors of J. This severe error 
magnification is the same as when starting from the moments of the weight 
function, so the method has dubious practical value. 
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